3.4.68 \(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^4} \, dx\) [368]

3.4.68.1 Optimal result
3.4.68.2 Mathematica [A] (verified)
3.4.68.3 Rubi [A] (verified)
3.4.68.4 Maple [A] (verified)
3.4.68.5 Fricas [A] (verification not implemented)
3.4.68.6 Sympy [A] (verification not implemented)
3.4.68.7 Maxima [A] (verification not implemented)
3.4.68.8 Giac [A] (verification not implemented)
3.4.68.9 Mupad [B] (verification not implemented)

3.4.68.1 Optimal result

Integrand size = 33, antiderivative size = 148 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^4} \, dx=\frac {(A-B+C) \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {(3 A+4 B-11 C) \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3}+\frac {(6 A+8 B+13 C) \sin (c+d x)}{105 d \left (a^2+a^2 \cos (c+d x)\right )^2}+\frac {(6 A+8 B+13 C) \sin (c+d x)}{105 d \left (a^4+a^4 \cos (c+d x)\right )} \]

output
1/7*(A-B+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^4+1/35*(3*A+4*B-11*C)*sin(d*x+c) 
/a/d/(a+a*cos(d*x+c))^3+1/105*(6*A+8*B+13*C)*sin(d*x+c)/d/(a^2+a^2*cos(d*x 
+c))^2+1/105*(6*A+8*B+13*C)*sin(d*x+c)/d/(a^4+a^4*cos(d*x+c))
 
3.4.68.2 Mathematica [A] (verified)

Time = 1.72 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.41 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^4} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \left (70 (3 A+2 B+4 C) \sin \left (\frac {d x}{2}\right )-35 (4 B+5 C) \sin \left (c+\frac {d x}{2}\right )+126 A \sin \left (c+\frac {3 d x}{2}\right )+168 B \sin \left (c+\frac {3 d x}{2}\right )+168 C \sin \left (c+\frac {3 d x}{2}\right )-105 C \sin \left (2 c+\frac {3 d x}{2}\right )+42 A \sin \left (2 c+\frac {5 d x}{2}\right )+56 B \sin \left (2 c+\frac {5 d x}{2}\right )+91 C \sin \left (2 c+\frac {5 d x}{2}\right )+6 A \sin \left (3 c+\frac {7 d x}{2}\right )+8 B \sin \left (3 c+\frac {7 d x}{2}\right )+13 C \sin \left (3 c+\frac {7 d x}{2}\right )\right )}{420 a^4 d (1+\cos (c+d x))^4} \]

input
Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + a*Cos[c + d*x])^4,x 
]
 
output
(Cos[(c + d*x)/2]*Sec[c/2]*(70*(3*A + 2*B + 4*C)*Sin[(d*x)/2] - 35*(4*B + 
5*C)*Sin[c + (d*x)/2] + 126*A*Sin[c + (3*d*x)/2] + 168*B*Sin[c + (3*d*x)/2 
] + 168*C*Sin[c + (3*d*x)/2] - 105*C*Sin[2*c + (3*d*x)/2] + 42*A*Sin[2*c + 
 (5*d*x)/2] + 56*B*Sin[2*c + (5*d*x)/2] + 91*C*Sin[2*c + (5*d*x)/2] + 6*A* 
Sin[3*c + (7*d*x)/2] + 8*B*Sin[3*c + (7*d*x)/2] + 13*C*Sin[3*c + (7*d*x)/2 
]))/(420*a^4*d*(1 + Cos[c + d*x])^4)
 
3.4.68.3 Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.97, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {3042, 3498, 25, 3042, 3229, 3042, 3129, 3042, 3127}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a \cos (c+d x)+a)^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^4}dx\)

\(\Big \downarrow \) 3498

\(\displaystyle \frac {(A-B+C) \sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}-\frac {\int -\frac {a (3 A+4 B-4 C)+7 a C \cos (c+d x)}{(\cos (c+d x) a+a)^3}dx}{7 a^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {a (3 A+4 B-4 C)+7 a C \cos (c+d x)}{(\cos (c+d x) a+a)^3}dx}{7 a^2}+\frac {(A-B+C) \sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (3 A+4 B-4 C)+7 a C \sin \left (c+d x+\frac {\pi }{2}\right )}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3}dx}{7 a^2}+\frac {(A-B+C) \sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3229

\(\displaystyle \frac {\frac {1}{5} (6 A+8 B+13 C) \int \frac {1}{(\cos (c+d x) a+a)^2}dx+\frac {a (3 A+4 B-11 C) \sin (c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B+C) \sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} (6 A+8 B+13 C) \int \frac {1}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx+\frac {a (3 A+4 B-11 C) \sin (c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B+C) \sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3129

\(\displaystyle \frac {\frac {1}{5} (6 A+8 B+13 C) \left (\frac {\int \frac {1}{\cos (c+d x) a+a}dx}{3 a}+\frac {\sin (c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )+\frac {a (3 A+4 B-11 C) \sin (c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B+C) \sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} (6 A+8 B+13 C) \left (\frac {\int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{3 a}+\frac {\sin (c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )+\frac {a (3 A+4 B-11 C) \sin (c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B+C) \sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3127

\(\displaystyle \frac {\frac {a (3 A+4 B-11 C) \sin (c+d x)}{5 d (a \cos (c+d x)+a)^3}+\frac {1}{5} (6 A+8 B+13 C) \left (\frac {\sin (c+d x)}{3 a d (a \cos (c+d x)+a)}+\frac {\sin (c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )}{7 a^2}+\frac {(A-B+C) \sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

input
Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + a*Cos[c + d*x])^4,x]
 
output
((A - B + C)*Sin[c + d*x])/(7*d*(a + a*Cos[c + d*x])^4) + ((a*(3*A + 4*B - 
 11*C)*Sin[c + d*x])/(5*d*(a + a*Cos[c + d*x])^3) + ((6*A + 8*B + 13*C)*(S 
in[c + d*x]/(3*d*(a + a*Cos[c + d*x])^2) + Sin[c + d*x]/(3*a*d*(a + a*Cos[ 
c + d*x]))))/5)/(7*a^2)
 

3.4.68.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3127
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + 
 d*x]/(d*(b + a*Sin[c + d*x])), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b 
^2, 0]
 

rule 3129
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c 
+ d*x]*((a + b*Sin[c + d*x])^n/(a*d*(2*n + 1))), x] + Simp[(n + 1)/(a*(2*n 
+ 1))   Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] 
&& EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
 

rule 3229
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f* 
x])^m/(a*f*(2*m + 1))), x] + Simp[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && 
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 

rule 3498
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b - a* 
B + b*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + Simp[1 
/(a^2*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*A*(m + 1) + m*(b 
*B - a*C) + b*C*(2*m + 1)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
 B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]
 
3.4.68.4 Maple [A] (verified)

Time = 1.75 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.61

method result size
parallelrisch \(\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\left (A -B +C \right ) \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {7 \left (3 A -C -B \right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}+7 \left (A +\frac {B}{3}-\frac {C}{3}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+7 A +7 B +7 C \right )}{56 a^{4} d}\) \(90\)
derivativedivides \(\frac {\frac {\left (A -B +C \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}+\frac {\left (3 A -C -B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}+\frac {\left (3 A +B -C \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C}{8 d \,a^{4}}\) \(106\)
default \(\frac {\frac {\left (A -B +C \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}+\frac {\left (3 A -C -B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}+\frac {\left (3 A +B -C \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C}{8 d \,a^{4}}\) \(106\)
risch \(\frac {2 i \left (105 C \,{\mathrm e}^{5 i \left (d x +c \right )}+140 B \,{\mathrm e}^{4 i \left (d x +c \right )}+175 C \,{\mathrm e}^{4 i \left (d x +c \right )}+210 A \,{\mathrm e}^{3 i \left (d x +c \right )}+140 B \,{\mathrm e}^{3 i \left (d x +c \right )}+280 C \,{\mathrm e}^{3 i \left (d x +c \right )}+126 A \,{\mathrm e}^{2 i \left (d x +c \right )}+168 B \,{\mathrm e}^{2 i \left (d x +c \right )}+168 C \,{\mathrm e}^{2 i \left (d x +c \right )}+42 A \,{\mathrm e}^{i \left (d x +c \right )}+56 B \,{\mathrm e}^{i \left (d x +c \right )}+91 C \,{\mathrm e}^{i \left (d x +c \right )}+6 A +8 B +13 C \right )}{105 d \,a^{4} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{7}}\) \(177\)
norman \(\frac {\frac {\left (A -B +C \right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{56 a d}+\frac {\left (A +B +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}+\frac {\left (9 A +7 B +5 C \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 a d}+\frac {\left (27 A +11 B +C \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{60 a d}+\frac {\left (31 A -17 B +3 C \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{280 a d}+\frac {\left (123 A -11 B -31 C \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{420 a d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2} a^{3}}\) \(181\)

input
int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+cos(d*x+c)*a)^4,x,method=_RETURNVER 
BOSE)
 
output
1/56*tan(1/2*d*x+1/2*c)*((A-B+C)*tan(1/2*d*x+1/2*c)^6+7/5*(3*A-C-B)*tan(1/ 
2*d*x+1/2*c)^4+7*(A+1/3*B-1/3*C)*tan(1/2*d*x+1/2*c)^2+7*A+7*B+7*C)/a^4/d
 
3.4.68.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.91 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^4} \, dx=\frac {{\left ({\left (6 \, A + 8 \, B + 13 \, C\right )} \cos \left (d x + c\right )^{3} + 4 \, {\left (6 \, A + 8 \, B + 13 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (39 \, A + 52 \, B + 32 \, C\right )} \cos \left (d x + c\right ) + 36 \, A + 13 \, B + 8 \, C\right )} \sin \left (d x + c\right )}{105 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^4,x, algorithm= 
"fricas")
 
output
1/105*((6*A + 8*B + 13*C)*cos(d*x + c)^3 + 4*(6*A + 8*B + 13*C)*cos(d*x + 
c)^2 + (39*A + 52*B + 32*C)*cos(d*x + c) + 36*A + 13*B + 8*C)*sin(d*x + c) 
/(a^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 
 4*a^4*d*cos(d*x + c) + a^4*d)
 
3.4.68.6 Sympy [A] (verification not implemented)

Time = 2.10 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.78 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^4} \, dx=\begin {cases} \frac {A \tan ^{7}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{56 a^{4} d} + \frac {3 A \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{40 a^{4} d} + \frac {A \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{8 a^{4} d} + \frac {A \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{8 a^{4} d} - \frac {B \tan ^{7}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{56 a^{4} d} - \frac {B \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{40 a^{4} d} + \frac {B \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{24 a^{4} d} + \frac {B \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{8 a^{4} d} + \frac {C \tan ^{7}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{56 a^{4} d} - \frac {C \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{40 a^{4} d} - \frac {C \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{24 a^{4} d} + \frac {C \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{8 a^{4} d} & \text {for}\: d \neq 0 \\\frac {x \left (A + B \cos {\left (c \right )} + C \cos ^{2}{\left (c \right )}\right )}{\left (a \cos {\left (c \right )} + a\right )^{4}} & \text {otherwise} \end {cases} \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**4,x)
 
output
Piecewise((A*tan(c/2 + d*x/2)**7/(56*a**4*d) + 3*A*tan(c/2 + d*x/2)**5/(40 
*a**4*d) + A*tan(c/2 + d*x/2)**3/(8*a**4*d) + A*tan(c/2 + d*x/2)/(8*a**4*d 
) - B*tan(c/2 + d*x/2)**7/(56*a**4*d) - B*tan(c/2 + d*x/2)**5/(40*a**4*d) 
+ B*tan(c/2 + d*x/2)**3/(24*a**4*d) + B*tan(c/2 + d*x/2)/(8*a**4*d) + C*ta 
n(c/2 + d*x/2)**7/(56*a**4*d) - C*tan(c/2 + d*x/2)**5/(40*a**4*d) - C*tan( 
c/2 + d*x/2)**3/(24*a**4*d) + C*tan(c/2 + d*x/2)/(8*a**4*d), Ne(d, 0)), (x 
*(A + B*cos(c) + C*cos(c)**2)/(a*cos(c) + a)**4, True))
 
3.4.68.7 Maxima [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.75 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^4} \, dx=\frac {\frac {B {\left (\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {15 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}} + \frac {C {\left (\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {15 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}} + \frac {3 \, A {\left (\frac {35 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {5 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}}}{840 \, d} \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^4,x, algorithm= 
"maxima")
 
output
1/840*(B*(105*sin(d*x + c)/(cos(d*x + c) + 1) + 35*sin(d*x + c)^3/(cos(d*x 
 + c) + 1)^3 - 21*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 15*sin(d*x + c)^7/ 
(cos(d*x + c) + 1)^7)/a^4 + C*(105*sin(d*x + c)/(cos(d*x + c) + 1) - 35*si 
n(d*x + c)^3/(cos(d*x + c) + 1)^3 - 21*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 
 + 15*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4 + 3*A*(35*sin(d*x + c)/(cos 
(d*x + c) + 1) + 35*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 21*sin(d*x + c)^ 
5/(cos(d*x + c) + 1)^5 + 5*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4)/d
 
3.4.68.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.16 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^4} \, dx=\frac {15 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 15 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 15 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 63 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 21 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 21 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 105 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 35 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 35 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 105 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 105 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 105 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{840 \, a^{4} d} \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^4,x, algorithm= 
"giac")
 
output
1/840*(15*A*tan(1/2*d*x + 1/2*c)^7 - 15*B*tan(1/2*d*x + 1/2*c)^7 + 15*C*ta 
n(1/2*d*x + 1/2*c)^7 + 63*A*tan(1/2*d*x + 1/2*c)^5 - 21*B*tan(1/2*d*x + 1/ 
2*c)^5 - 21*C*tan(1/2*d*x + 1/2*c)^5 + 105*A*tan(1/2*d*x + 1/2*c)^3 + 35*B 
*tan(1/2*d*x + 1/2*c)^3 - 35*C*tan(1/2*d*x + 1/2*c)^3 + 105*A*tan(1/2*d*x 
+ 1/2*c) + 105*B*tan(1/2*d*x + 1/2*c) + 105*C*tan(1/2*d*x + 1/2*c))/(a^4*d 
)
 
3.4.68.9 Mupad [B] (verification not implemented)

Time = 1.30 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.67 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^4} \, dx=\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,\left (A-B+C\right )}{56\,a^4\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (B-3\,A+C\right )}{40\,a^4\,d}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (A+B+C\right )}{8\,a^4\,d}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (3\,A+B-C\right )}{24\,a^4\,d} \]

input
int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(a + a*cos(c + d*x))^4,x)
 
output
(tan(c/2 + (d*x)/2)^7*(A - B + C))/(56*a^4*d) - (tan(c/2 + (d*x)/2)^5*(B - 
 3*A + C))/(40*a^4*d) + (tan(c/2 + (d*x)/2)*(A + B + C))/(8*a^4*d) + (tan( 
c/2 + (d*x)/2)^3*(3*A + B - C))/(24*a^4*d)